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Non-Hermitian shortcut to adiabaticity
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A non-Hermitian shortcut to adiabaticity is introduced. By adding an imaginary term in the diagonal elements
of the Hamiltonian of a two-state quantum system, we show how one can cancel the nonadiabatic losses and
perform an arbitrarily fast population transfer, without the need to increase the coupling. We apply this technique
to two popular level-crossing models: the Landau-Zener model and the Allen-Eberly model.
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I. INTRODUCTION

Techniques based on adiabatic evolution are among the
most popular methods for coherent atomic manipulation
[1]. During the adiabatic evolution, the system remains in
an eigenstate of the time-dependent Hamiltonian. If this
eigenstate is such that it connects different bare states in the
beginning and in the end of the evolution, then it can be used
for population transfer. However, perfectly adiabatic evolution
is hard to realize, and in a real experiment usually there
exists some (hopefully small) nonadiabatic coupling, which
causes transitions between the eigenstates of the Hamiltonian
and decreases the efficiency of the population transfer. Many
methods have been proposed to improve adiabatic evolution,
for instance by using composite pulses [2] or parallel adiabatic
passage [3]. Another popular approach is to use a shortcut to
adiabaticity by adding extra fields which aim to nullify the
nonadiabatic coupling [4]. Most of the proposed techniques
only use Hermitian Hamiltonians, and only little is known in
the non-Hermitian case [5]. In the recent years, however, an
increasing interest has been devoted to study non-Hermitian
Hamiltonians, especially in the context of PT -symmetric
systems [6]. It was demonstrated, for instance, that a PT -
symmetric Hamiltonian can produce a faster-than-Hermitian
evolution in a two-state quantum system, while keeping
the eigenenergy difference fixed [7]. Some non-Hermitian
extensions [8] were also done to the Landau-Zener (LZ)
model, which is a standard tool for the description of level-
crossing systems. The dynamics of certain time-dependent
PT -symmetric two-level Hamiltonians have been discussed
in recent works as well [9,10]. In this paper, we propose to
realize a shortcut to adiabaticity by using complex-valued
energies, which produce a non-Hermitian Hamiltonian. Our
approach makes it possible to improve the speed of the rapid
adiabatic passage, without the need to increase the coupling,
unlike in the standard shortcuts methods in Hermitian systems.
We apply this approach to two famous models, namely the LZ
and the Allen-Eberly (AE) models, both of which are used
for the description of level-crossing systems. The method
is, however, applicable to a much larger variety of models.
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The main differences between Hermitian and non-Hermitian
adiabatic shortcut methods are discussed.

II. ADIABATIC PASSAGE IN A TWO-LEVEL SYSTEM

In this section we briefly review the theory behind the rapid
adiabatic passage for a two-level Hermitian system (see, e.g.,
[1]). The dynamics of a two-state quantum system is described
by the Schrödinger equation,

ih̄∂tc(t) = H(t)c(t), (1)

where the vector c(t) = [c1(t),c2(t)]T contains the two proba-
bility amplitudes of the bare (diabatic) states |1〉 and |2〉. The
Hamiltonian in the rotating-wave approximation is

H(t) = h̄

2

[
0 �(t)

�(t) 2�(t)

]
, (2)

where �(t) is the Rabi frequency, which quantifies the strength
of the coupling between states |1〉 and |2〉, and �(t) is the
detuning between the external field and the Bohr frequency
of the transition. To study adiabatic passage, we introduce the
so-called adiabatic states |ϕ+(t)〉 and |ϕ−(t)〉, which are the
eigenstates of the time-dependent Hamiltonian,

H(t)|ϕ±(t)〉 = λ±(t)|ϕ±(t)〉, (3)

with eigenvalues

λ±(t) = 1
2 [�(t) ±

√
�(t)2 + �(t)2]. (4)

The amplitudes in the adiabatic basis a(t) = [a−(t),a+(t)]T are
connected with the diabatic ones c(t) via the rotation matrix

R(θ ) =
[

cos θ sin θ

− sin θ cos θ

]
, (5)

as c(t) = R(θ (t))a(t), where θ (t) = 1
2 arctan(�/�). The

Schrödinger equation in the adiabatic basis reads

ih̄∂ta(t) = Ha(t)a(t), (6)

where

Ha(t) = h̄

[
λ−(t) −iθ̇ (t)

iθ̇(t) λ+(t)

]
. (7)

If |θ̇ (t)| � λ+(t) − λ−(t) = λ(t), then the evolution is adia-
batic and we can neglect the transitions between the adiabatic
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states. Finally, if �(t) and �(t) are chosen in such way that

lim
t→−∞ θ (t) → π/2, lim

t→∞ θ (t) → 0, (8)

then we have

|ϕ+(−∞)〉 = |1〉, |ϕ+(∞)〉 = |2〉, (9)

which means that the adiabatic following will produce com-
plete population transfer from state |1〉 to state |2〉. The
efficiency of this transfer is limited by the adiabatic condi-
tion |θ̇ (t)| � λ(t), which requires slow evolution. Complete
population transfer by adiabatic following can be realized, for
instance by using the LZ model [11], the AE model [12], or
linearly chirped Gaussian pulses [13].

III. NON-HERMITIAN SHORTCUTS

In this section we show how the efficiency of the transfer
can be improved by adding a suitably chosen non-Hermitian
term iγ (t), which aims to nullify the nonadiabatic coupling.
For this goal, we add a nonzero γ term in the Hamiltonian (2),
and we obtain

Hγ (t) = h̄

2

[
iγ (t) �(t)

�(t) 2�(t) − iγ (t)

]
. (10)

Two-level non-Hermitian Hamiltonians have been considered
in several recent works (see, for instance, [8–10,14,15]) and
used to model, for example, the dynamics of open two-level
systems or light transport in an optical directional coupler with
gain and/or loss regions. For example, the Hamiltonian (10)
can be used to describe the physics of two coupled waveguides
(cavities) with an asymmetric gain-loss profile and propagation
constant detuning that varies with distance (time) [10].

In the basis |ϕ±(t)〉 the Hamiltonian (10) has the form

Hγ
a (t)

= h̄

[
λ−(t) + 1

2 iγ (t) cos 2θ (t) 1
2 iγ (t) sin 2θ (t) − iθ̇ (t)

1
2 iγ (t) sin 2θ (t) + iθ̇ (t) λ+(t) − 1

2 iγ (t) cos 2θ (t)

]
,

(11)

where λ±(t) are again defined by Eq. (4). We assume that ini-
tially the system is in state |1〉, which in that moment coincides
with |ϕ+(t)〉. Next, if we choose γ (t) = 2θ̇ (t)/ sin 2θ (t), we
can nullify H12(t), which means that state |ϕ−(t)〉, which is not
populated initially, never receives any population during the
evolution. Since state |ϕ+(t)〉 initially coincides with state |1〉,
and finally with state |2〉, this allows the transfer to be realized
at any arbitrary speed.

We now consider two special cases which will reveal how
to apply the described technique in a concrete situation. The
first example is the LZ model,

�(t) = �0 = const, �(t) = β2t, (12)

where β2 is the slope of the crossing and, without loss of
generality, we consider �0 > 0. It is convenient to introduce
the dimensionless parameters T = βt and ω = �0/β. Then,
it is easy to show that the nonadiabatic coupling has the form
of a Lorentzian,

θ̇(t) = − �0β
2

2
(
�2

0 + β4t2
) = −�0

2(ω2 + T 2)
, (13)

and hence, in order to nullify it, we choose

γ (t) = 2θ̇ (t)

sin 2θ (t)
= −1√

�2
0/β

4 + t2
= −β√

ω2 + T 2
. (14)

In such a way, the Hamiltonian in the basis |ϕ±(t)〉 becomes

Hγ
a (t)

= h̄

[
λ−(t) + 1

2 iγ (t) cos 2θ (t) 0

2iθ̇(t) λ+(t) − 1
2 iγ (t) cos 2θ (t)

]
,

(15)

where

λ± = β

2
(T ±

√
ω2 + T 2) (16)

and

cos 2θ = ωT√
ω2T 2 + ω4

. (17)

If our system is prepared initially in state c(ti) =
[sin θ (ti), cos θ (ti)] ≈ [1,0], then we will have a−(ti) = 0 and
a+(ti) = 1. By using the Schrödinger equation (6) we obtain
for the evolution of the amplitudes

a−(tf ) = 0, (18a)

a+(tf ) = exp

[
−i

∫ tf

ti

λ+(t) − 1
2 iγ (t) cos 2θ (t)dt

]
, (18b)

for any value of tf > ti . It can be seen from Eq. (14) that γ (t)
is an even function of time and from Eq. (17) that cos 2θ (t) is
an odd function of time. Hence, if we assume that tf = −ti ,
the norm of the state vector at tf is equal to unity, because
the real part of the integral in Eq. (18b) is zero. This property
holds whenever �(t) is an even function of time and �(t) is an
odd function of time. In Fig. 1 we compare the evolution of the
populations P1 and P2 of the two bare states for the standard
LZ model and for the one with the additional non-Hermitian
term iγ . It can be seen that in the case of the non-Hermitian LZ
model the population transfer is always perfect, regardless of
the value ω of the interaction strength. However, the smaller the
value of ω, the larger loss/gain rate has to be included. It should
be noted here that, since the Hamiltonian is non-Hermitian, the
norm of the state vector, given by

√
P1 + P2, does not need to

be conserved during the evolution. This property can be seen
in Fig. 1 (middle frame), where the norm is not conserved
during the interaction. However, because of the symmetry of
� and �, the initial and final norm of the state vector is unity.
Another important point that should be emphasized is that we
only consider evolution in a finite time. Since the integral of
γ (t) is divergent, we have to cut it in time in order to prevent
the population P1 to increase to values larger than unity. In
the case of Fig. 1, the time interval is T ∈ [−15,15]. Before ti
and after tf , γ is assumed equal to zero. We want to note here
that, unlike the standard LZ model, where it is well known that
the two bare energies cross in time, in the non-Hermitan LZ
model, because of the extra imaginary term, the two curves do
not cross in the complex plane. In Fig. 2 we show a schematic
plot of the bare energies ε for the standard and non-Hermitian
LZ models and this feature is well illustrated.
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FIG. 1. (Color online) Time evolution of the populations for the
standard LZ model (top frame) and with the addition of the non-
Hermitian term (middle frame). Loss/gain rate as a function of time
(bottom frame). The values of the interaction parameters are �0/β =
0.2 (solid line), �0/β = 1 (dashed line), and �0/β = 2 (dot-dashed
line).

It is worth saying that a physical implementation of the
non-Hermitian shortcut to adiabaticity above designed for
the LZ model can be accomplished in waveguide optics.
As reported in Ref. [16], LZ tunneling with linear crossing
of energy levels can be mimicked in a directional coupler
with a cubically bent profile for the waveguide axis. The
required gain/loss imbalance between the two waveguides
2iγ (t), with γ (t) provided by Eq. (14), can be implemented
by cascading a purely dissipative coupler with nonuniform
propagation loss, and an active coupler with uniform gain,
precisely as suggested in a recent paper on PT -symmetric
unidirectional reflectionless metamaterials [17]. Finally, the
nonuniform loss profile γ (t) can be obtained by evanescent
coupling of the waveguide mode with a metallic thin film
cover of suitable geometry deposited on top of the passive
waveguides, a technique that has been already exploited to
produce a sinusoidally shaped loss profile along the axis of a
silicon on silica channel waveguide [17].

As a second example, we consider the AE model,

�(t) = �0 sech (t/τ ), �(t) = D tanh(t/τ ), (19)

where τ is the characteristic duration of the interaction and D

is a real parameter, corresponding to the chirp rate. We proceed

FIG. 2. (Color online) Bare energies for the LZ model.
(a) Standard LZ model; the energies cross in time. (b) Non-Hermitian
LZ model; because of the imaginary term iγ (t), the energies do not
cross.

the same way as with the LZ model and calculate

θ̇ (t) = 1

τ

δα cosh(t/τ )

δ2 − 2α2 − δ2 cosh(2t/τ )
, (20)

where α = �0τ and δ = Dτ . For the gain/loss function we
obtain

γ (t) = 1

τ

−2δ(et/τ + e3t/τ )

(e2t/τ − 1)2
√

csch2(t/τ )[δ2 + α2 csch2(t/τ )]
,

(21)
where, again, like for the LZ model, we assume that this
function is taken within some finite symmetric time interval.
In Fig. 3 we show the population evolution for the AE model
with and without the addition of the term iγ . Unlike the LZ
model, here the function γ does not vanish at ±∞, but tends
to a constant value.

IV. DISCUSSION AND CONCLUSION

In this work we have proposed a method of non-Hermitian
shortcut to adiabaticity, which makes it possible to achieve
an arbitrarily fast population transfer in a two-state quantum
system. This is performed by introducing a non-Hermitian
term in the Hamiltonian, which has the purpose of canceling
the nonadiabatic coupling. The improvement of the population
transfer is explicitly demonstrated for the special cases of
the LZ and AE models. A few major differences between
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FIG. 3. (Color online) Same as Fig. 1, but for the AE model. The
values of the interaction parameters are Bτ = 1 and �0τ = 0.2 (solid
line), �0τ = 1 (dashed line), and �0τ = 2 (dot-dashed line). Unlike
for the non-Hermitian LZ model, here the three curves for P1 and P2

in the non-Hermitian AE model are undistinguishable.

our method and the shortcut technique of Hermitian systems
should be highlighted. In the standard Hermitian shortcuts
to adiabaticity [4] additional fields are used, which couple
the bare states in such way that the resultant nonadiabatic

coupling is zero. These techniques make it possible to speed
up the adiabatic evolution, but at the cost of increasing the
coupling. Conversely, in the non-Hermitian case proposed in
our work the population transfer can be made arbitrarily fast,
even for an arbitrarily small coupling between the two states,
by introducing a complex-valued detuning (energies) of the
uncoupled system. This non-Hermitian term corresponds to
gain or loss (depending on the sign) of population in the two
bare states. Such terms can be physically realized, for instance,
in two coupled optical waveguides with longitudinally varying
gain and loss regions [10]. A second feature is that the
shortcut to adiabaticity in the non-Hermitian model is sensitive
to the initial condition of the system. In order to have
the norm of the state vector preserved, we need to start
exactly from c(ti) = [sin θ (ti), cos θ (ti)], which in our case
is approximately equal to [1,0]. If we deviate from this
condition, the technique will still produce complete transfer
of population, but without preserving the norm and some
extra gain or loss may be introduced. Finally, a third and
very distinctive difference is that the non-Hermitian shortcut
to adiabaticity is not symmetric against flipping the initial
condition. As the standard Hermitian shortcuts produce com-
plete population transfer for the initial conditions c(ti) = [1,0]
and c(ti) = [0,1], our technique demands a change in the sign
of γ (i.e., the interchange of gain and loss terms) for the
two different situations. Our analysis suggests that adiabatic
passage techniques well developed for Hermitian systems can
be extended to non-Hermitian ones, with extra degrees of
freedoms and novel dynamical features. It is envisaged that our
study, which has been focused to the simplest cases of adiabatic
passage methods in a two-level system, could stimulate further
studies of coherent population transfer techniques of multilevel
systems (such as STIRAP [1]) for non-Hermitian systems.
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